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Abstract. The existence of non-linear magnetoplasma waves in compensated metals and semi-
metals in the presence of a strong magnetic field is predicted. Non-linearity in the case considered
is caused by the influence of the magnetic field of the wave on the dynamics of the electrons and
holes. The conductivity tensor is calculated neglecting the spatial dispersion and is shown to be
in the non-linear regime a differential—with respect to time—operator which is a manifestation
of the temporal dispersion effects. The shape of the wave solution obtained is determined by
two parameters: the amplitudeH and the phase velocityV . When the amplitude is small and
V < VA, whereVA is the Alfvén velocity, the solution transforms into the well-known linear
magnetoplasma wave. It is shown that, contrary to the linear case, the non-linear magnetoplasma
wave exists when the phase velocity is both less and larger thanVA. It is established that with
increase of the velocity and the amplitude being fixed the quasiharmonic wave turns into a
series of pulses, the interval between which is growing infinitely. In the aperiodic limit the
wave becomes a one-parameter soliton. Its velocity is larger thanVA and depends linearly on
H. With increase ofH, whenV is fixed, the period of the magnetoplasma wave descends and
the wave shape becomes a series of sharp spikes. Thus, whenV < VA we have transition from
a linear wave to an anharmonic one, while whenV > VA we have a transition from a soliton
to a sequence of pulses. Both the soliton and the non-linear periodic wave withV > VA have
no analogues in the linear case. These electromagnetic waves are essentially non-linear even at
small—in comparison with the external magnetic field—amplitudes.

1. Introduction

It is already known that metals possess rather peculiar non-linear electrodynamic properties
[1]. Usually, in plasma or semiconductors, a non-linear response to electromagnetic
perturbation is achieved owing to the considerable departure of the electron system from
equilibrium. In metals, because of the high concentration, electrons are always in a near-
equilibrium state. Nevertheless, it is fairly standard to observe a non-linear regime there,
which is due to the fact that, in metals, sources of non-equilibrium and non-linearity are
different. The former is caused by a weak electric field, while the latter is caused by a
strong magnetic field of an electromagnetic wave. The Lorentz force, determined by the
magnetic wave component, affects the dynamics of charge carriers. Hence, the conductivity
of a metal depends on the configuration of the magnetic field. Such a magnetodynamic
mechanism of non-linearity is typical for pure metals under low temperatures. It causes a
wide range of non-linear electromagnetic phenomena.

In the static case, magnetodynamic non-linearity leads, e.g. to a deviation of the current–
voltage characteristics of thin metal samples from Ohm’s law [2, 3], to oscillations of voltage
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as a function of current [4, 5], to the appearance of a negative differential resistance [6] and
to the pinch effect [7]. In the case in which the frequencyω of the electromagnetic field
is much less than the carrier relaxation frequencyν, one should mention first the effect of
the ‘current states’ [8–10], which, in its turn, causes a hysteresis interaction of radio-waves
[11, 12] and the appearance of dissipative structures [13]. The effects of weak spatial
dispersion in compensated metals lead to the formation of low-frequency electromagnetic
solitons and kinks [14]. The action of a magnetic field on the dynamics of electrons
causes a decrease of the collisionless damping of helicons [15]. That is why high-amplitude
spiral waves can propagate under conditions in which linear electromagnetic excitations are
absent [16].

At present, little is known about the manifestation of the magnetodynamic non-linearity
in the high-frequency regionω,

ν � ω. (1.1)

There has been some work on non-linear cyclotron resonance [17–19]. However, these
studies were restricted to the case of weak non-linearity. At the same time, in the strongly
non-linear regime in the high-frequency range (1.1), essentially new phenomena, having
no analogues in the linear situation, may occur. In fact, the recent paper [20] predicted
excitation of shock magnetoplasma waves in a compensated metal that is irradiated by a
monochromatic signal in the presence of a constant magnetic field. It turns out that the
magnetodynamic mechanism leads to steepening and overturning of the front of a wave
propagating in the bulk of a sample. These results have stimulated the search for other
non-trivial manifestations of the specifically metallic non-linearity in the high-frequency
case (1.1).

In the present work we study the possibility of propagation of high-frequency finite-
amplitude waves in compensated metals (or semi-metals) in the presence of a strong external
magnetic fieldH0. This question is discussed for the case of an isotropic metal with
quadratic electron and hole dispersion laws. The results obtained below for this simplified
model will also be qualitatively valid for the more complicated structures of energy spectra of
quasiparticles. We will restrict ourselves to the case of linearly polarized waves propagating
transversely to the external magnetic field vectorH0. The phase wave velocityV is assumed
to be sufficiently large:

V/v
e,h
F � min(1, ω/ν) (1.2)

that we can neglect spatial dispersion effects in the conductivity. The expressionsv
e,h
F stand

for the Fermi velocities of electronsveF and holesvhF .
It is known [21] that in the linear case under conditions (1.1) and (1.2) in compensated

metals (semi-metals) there exist transverse magnetoplasma waves. If the magnetic field
of the wave is parallel toH0, its spectrum is determined by the conductivity in the
plane perpendicular toH0. The transverse part of the conductivity tensor in the Cartesian
coordinate framex, y, z‖H0 is of the form [21]

σxx = σyy = Nec

H0

[
γe
(
1+ γ 2

e

)−1+ γh
(
1+ γ 2

h

)−1
]

σxy = −σyx = Nec

H0

[(
1+ γ 2

h

)−1− (1+ γ 2
e

)−1
]

(1.3)

where

γe,h = (ν − iω)

(
eH0

me,hc

)−1

. (1.4)
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Here c is the velocity of light,e is the elementary charge, the quantitiesme andmh are
effective electron and hole masses respectively andN is the concentration of either electrons
or holes. Using (1.3) and (1.4), one can deduce the following dispersion relation between
the frequencyω and wavevectorq of the linear magnetoplasma wave [21] (for definiteness
the vectorq is chosen to be parallel to thex-axis):

q = ω

VA

(
1− ω2

�2
0

)−1/2

�0 = eH0

(memh)1/2c
. (1.5)

According to (1.5) the phase velocityV = ω/q of the harmonic wave is always less than
the Alfvén velocityVA. This means that the linear magnetoplasma waves can be observed
only in such strong external fieldsH0 that the Alfv́en velocityVA is much larger than the
Fermi velocities, both electron,veF , and hole,vhF :

v
e,h
F � VA VA = H0

[4πN(me +mh)]1/2
. (1.6)

The results for the transverse magnetoplasma wave described above have been obtained
in the limit of infinitesimal amplitudes, i.e. without taking into account magnetodynamic
non-linearity. The question arises of what kind of magnetoplasma oscillation will take
place in the non-linear regime, when the magnetic component affects charge motion and the
fields in metals cease to be monochromatic. To study this problem we calculate in section 3
the response of a metal to a high-frequency electromagnetic field of finite amplitude. The
expressions for the components of the non-linear conductivity turn out to be similar to the
formulae (1.3) and (1.4). However, in the non-linear tensor, instead of the constantH0, the
sum of the external magnetic field and the intrinsic one appears. Moreover, in (1.4) the
quantity−iω is replaced with the operator for differentiating with respect to time,∂/∂t . This
takes into account temporal dispersion effects in non-linear, and hence non-monochromatic,
wave fields. These distinctions lead to qualitatively new properties ofσxx , σyy , σxy , σyx .
They are not scalars any more, but differential operators acting on the electric field of the
wave. This theory of the non-linear high-frequency conductivity enables one to perform self-
consistent analysis of the dynamics of the transverse finite-amplitude magnetoplasma waves.
In section 4 we will study waves of stationary shape which can propagate in compensated
metals in the high-frequency case (1.1). Due to the magnetodynamic non-linearity, the
domain of existence of physically interesting solutions of the Maxwell equations is enlarged.
In subsection 4.2 we demonstrate the possibility of existence of non-linear magnetoplasma
waves with a phase velocity larger than the Alfvén velocity,V > VA. Such waves are
periodic series of pulses, the interval between them increasing with increase of the velocity.
Finally, the wave becomes a soliton propagating against a background of constant external
field H0. The soliton phase velocity depends linearly on its amplitude. It should be noted
that the electromagnetic excitations discovered are essentially anharmonic even for small—
in comparison with the external field—amplitudes. This means that even a relatively small
degree of magnetodynamic non-linearity can be sufficient for the existence of strongly non-
linear magnetoplasma waves.

2. Statement of the problem; general equations

In what follows we shall consider a one-dimensional problem, assuming that the electro-
magnetic field in metal depends only on one spatial coordinate,x. We assume that the
external and intrinsic magnetic fields are collinear with each other and perpendicular to the
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direction of propagation (thex-axis). Thez-axis is chosen to lie along the vectorH(x, t)
of the total magnetic field:

H(x, t) = {0, 0, H(x, t)}. (2.1)

The electric field vector,E(x, t), in this situation, is polarized in the(x, y)-plane:

E(x, t) = {Ex(x, t), Ey(x, t),0}. (2.2)

Then, the Maxwell equations can be written as follows:

∂H(x, t)

∂x
= −4π

c
jy(x, t)

∂Ey(x, t)

∂x
= −1

c

∂H(x, t)

∂t
(2.3)

jx(x, t) = 0 (2.4)

wherejx(x, t) and jy(x, t) are thex- and y-components of the current density. Equation
(2.4) can be viewed as an electroneutrality condition. It can be used to determine the
component transverse to the current, the so-called Hall component,Ex(x, t), of the electric
field.

To obtain a self-consistent solution of the set (2.3), (2.4) one has to evaluate the current-
density componentsjx,y(x, t). Since the contributions of the electrons and holes are additive:

jα(x, t) = jeα(x, t)+ jhα (x, t) α = x, y (2.5)

they can be calculated separately. The transverse components of the current density are
given by the standard expression:

j iα = −
2e

(2πh̄)3

∫
d3p viαfi i = e, h. (2.6)

Here h̄ is the Planck constant,viα is the α-component of the velocity andfi is the non-
equilibrium addition to the Fermi distribution function of theith group of charge carriers.
The integral in (2.6) is taken over the whole electron (hole) momentum space.

The non-equilibrium additionfi should be determined from the Boltzmann kinetic
equation:

∂fi

∂t
− e
c
viyH(x, t)

∂fi

∂px
+ e
c
vixH(x, t)

∂fi

∂py
+ νfi = e ∂fF

∂εi

[
vixEx(x, t)+ viyEy(x, t)

]
(2.7)

wherefF is the equilibrium distribution function, which depends only on the electron (hole)
energyεi . Equation (2.7) is linearized with respect to the electric field. The validity of such
a linearization stems from the fact that in metals, due to the high conductivity, the electric
field is always small. However, as was mentioned in the introduction, one may expect in
metals an essentially non-linear regime because of the action of the intrinsic magnetic field
of a wave on the dynamics of the charge carriers. That is why all of the terms in (2.7)
related to the Lorentz force of the magnetic fieldH(x, t) have been retained. In the kinetic
equation (2.7) we have taken into account the temporal dispersion and neglected the spatial
dispersion. As is known, this may be done if the spatial scale of the electromagnetic field
variation is the largest length of the problem, i.e. much larger than both the electron (hole)
free path length and the typical size of their orbit in the magnetic fieldH(x, t). In our
case these requirements for omitting the spatial dispersion can be written in the form of the
inequality (1.2).

To conclude this section, it should be noted that we have assumed that the total magnetic
field H(x, t) never vanishes. This means that the functionH(x, t) is of constant sign. For
definiteness we shall take bothH0 andH(x, t) positive.
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3. The non-linear current density and conductivity tensor

Let us begin by calculating the electron current densityjeα(x, t). To this end, consider,
instead of the non-equilibrium additionfe and the velocitiesvex , vey , the functionψe and
variablesv⊥, ϕ given by

fe = e(∂fF /∂εe)ψe vex = −v⊥ sinϕ vey = v⊥ cosϕ. (3.1)

As follows from (2.7) and (3.1), the functionψe satisfies the equation

∂ψe

∂t
+�e(x, t)∂ψe

∂ϕ
+ νψe = v⊥

[−Ex sinϕ + Ey cosϕ
]

(3.2)

where�e(x, t) is the cyclotron electron frequency in the magnetic fieldH(x, t):

�e(x, t) = eH(x, t)

mec
. (3.3)

Using the characteristics method one can obtain from (3.2) the following expression forψe:

ψe(x, ϕ, t) = −v⊥
∫ t

−∞
dt ′ sin

(
ϕ −

∫ t

t ′
dt ′′ �e(x, t ′′)

)
eν(t

′−t)Ex(x, t ′)

+ v⊥
∫ t

−∞
dt ′ cos

(
ϕ −

∫ t

t ′
dt ′′ �e(x, t ′′)

)
eν(t

′−t)Ey(x, t ′). (3.4)

This formula determines rather complicated integral relations between the functionψe and
electromagnetic field. This makes it inconvenient for further use. However, solution (3.4)
can be rewritten in terms of differential, instead of integral, operators. Multiplying both
sides of (3.4) by�e(x, t) and acting with the operator 1+ γ̂ 2

e , where

γ̂e =
(
ν + ∂

∂t

)
1

�e
(3.5)

one gets the differential relation(
1+ γ̂ 2

e

)
�eψe = v⊥ cosϕ

(
Ex + γ̂eEy

)+ v⊥ sinϕ
(
Ey − γ̂eEx

)
. (3.6)

In line with this relation a solution of (3.2) can now be written as

ψe(x, ϕ, t) = v⊥ cosϕ

�e

(
1+ γ̂ 2

e

)−1(
Ex + γ̂eEy

)+ v⊥ sinϕ

�e

(
1+ γ̂ 2

e

)−1(
Ey − γ̂eEx

)
. (3.7)

We present in appendix A an alternative derivation of this result.
Using the expression obtained, equation (3.7), forψe(x, ϕ, t) one can easily calculate

the electron current density. Substituting (3.1) and (3.7) in (2.6) and averaging over the
momentum space, one can presentjeα(x, t) as

jex =
Neec

H

(
1+ γ̂ 2

e

)−1(−Ey + γ̂eEx)
jey =

Neec

H

(
1+ γ̂ 2

e

)−1(
Ex + γ̂eEy

)
.

(3.8)

HereNe stands for the electron concentration.
The contribution of holesjhα (x, t) in the total current density (2.5) can be calculated

analogously. Therefore, the corresponding formulae forjhα (x, t) follow from (3.8) on
replacing the electron parameters with the hole ones:

e→−e Ne → Nh me → mh.



1038 N M Makarov et al

Also, instead of the operator̂γe there appears the differential operatorγ̂h and instead of
�e(x, t) there appears the hole cyclotron frequency�h(x, t):

γ̂h =
(
ν + ∂

∂t

)
1

�h
�h(x, t) = eH(x, t)

mhc
. (3.9)

It should be noted that the operatorsγ̂e and γ̂h commute, since, as follows from (3.3), (3.5)
and (3.9), they are linearly interrelated:

mhγ̂e = meγ̂h. (3.10)

As a result, the relation between the current density (2.5) and the electric field can be
presented in the traditional form of Ohm’s law:

jα = σ̂αβEβ α, β = x, y. (3.11)

However, the components of the conductivity tensorσ̂αβ in (3.11) are differential—with
respect to time—operators:

σ̂xx = σ̂yy = ec

H

[
Neγ̂e

(
1+ γ̂ 2

e

)−1+Nhγ̂h
(
1+ γ̂ 2

h

)−1
]

σ̂xy = −σ̂yx = ec

H

[
Nh
(
1+ γ̂ 2

h

)−1−Ne
(
1+ γ̂ 2

e

)−1
]
.

(3.12)

We emphasize that formulae (3.11), (3.12) are valid only if the magnetic fieldH(x, t) is
strictly non-zero, which guarantees that the differential operators (3.5) and (3.9) have no
singularities and that the above-developed procedure for reducing the integral equation (3.4)
to the differential ones (3.7), (3.8) and (3.12) is correct.

Expressions (3.11), (3.12) constitute the principal result of this section. Formulae (3.12)
determine the non-linear conductivity tensor for the situation in which charge carriers are
affected by the magnetic field of the wave. Comparison of (3.12) with (1.3) demonstrates
that the structure of the non-linear conductivity tensor is similar to the structure of the
linear one, discussed in the introduction. That is why the linear limit of expressions (3.12)
is readily obtainable. Indeed, let an electromagnetic excitation be sufficiently weak and
depend on time according to the monochromatical law exp(−iωt). In this case the charge-
carrier movement is entirely determined by the constant external fieldH0. Then one can
put H(x, t) in (3.12) equal toH0 and replace the operatorŝγe,h with the scalarsγe,h. On
doing this, for compensated metals (Ne = Nh = N ), expressions (3.12) transform into the
linear theory formulae (1.3).

For our further purposes it is convenient to rewrite (3.11) and (3.12) in a form containing
no inverse operators(1+ γ̂ 2

e,h)
−1. Multiplying relation (3.11) byH/ec and applying the

operator(1+ γ̂ 2
e )(1+ γ̂ 2

h ) one can obtain for thex- andy-components of the current density
the following expressions:(
1+ γ̂ 2

e

)(
1+ γ̂ 2

h

)H
ec
jx =

[
Nh
(
1+ γ̂ 2

e

)−Ne(1+ γ̂ 2
h

)]
Ey

+ [Neγ̂e(1+ γ̂ 2
h

)+Nhγ̂h(1+ γ̂ 2
e

)]
Ex (3.13)(

1+ γ̂ 2
e

)(
1+ γ̂ 2

h

)H
ec
jy =

[
Ne
(
1+ γ̂ 2

h

)−Nh(1+ γ̂ 2
e

)]
Ex

+ [Neγ̂e(1+ γ̂ 2
h

)+Nhγ̂h(1+ γ̂ 2
e

)]
Ey. (3.14)

According to the electroneutrality condition,jx = 0, it follows from (3.13) that the transverse
(i.e. the Hall) componentEx is related to the longitudinal componentEy via the differential
relation[
Neγ̂e

(
1+ γ̂ 2

h

)+Nhγ̂h(1+ γ̂ 2
e

)]
Ex =

[
Ne
(
1+ γ̂ 2

h

)−Nh(1+ γ̂ 2
e

)]
Ey. (3.15)



Non-linear conductivity and magnetoplasma waves 1039

Now we can exclude the Hall field from expression (3.14) for they-component of the
current density. Applying the operator [Neγ̂e

(
1+ γ̂ 2

h

)+Nhγ̂h(1+ γ̂ 2
e

)
] to the both sides of

equation (3.14) and using (3.15), one can derive after some simple calculations the following
relation between they-components of the current density and the electric field:

[
Neγ̂e

(
1+ γ̂ 2

h

)+Nhγ̂h(1+ γ̂ 2
e

)] H
ec
jy =

[(
Ne −Nh

)2+ (Neγ̂h +Nhγ̂e)2
]
Ey. (3.16)

The Maxwell equations (2.3), complemented with the equation (3.16), constitute a self-
consistent system for determining the magnetic field and they-components of the electric
field in a metal. KnowingH(x, t) andEy(x, t) one can then calculate the Hall fieldEx(x, t)
using (3.15).

The above results are applicable for arbitrarily related concentrations of electronsNe
and holesNh. In other words, they can be used for non-compensated metals as well as for
compensated ones.

Let us discuss briefly the conductivity of non-compensated metals in the simplest case,
in which there is only one (electron) group of charge carriers. SettingNh in (3.16) equal
to zero and taking into account the definition of the operatorγ̂e, equations (3.3) and (3.5),
one can conclude that the magnetodynamic non-linearity does not affect the longitudinal
conductivity and that they-component of the current densityjy does not depend explicitly
on the magnetic fieldH(x, t):(

ν + ∂

∂t

)
jy = Nee

2

me
Ey. (3.17)

This is so because of the strong non-linear Hall effect. Indeed, according to (3.15), the
equation for determining the Hall electric field containsH(x, t) explicitly:(

ν + ∂

∂t

)
Ex

H
= e

mec
Ey. (3.18)

Consider now a compensated metal withNe = Nh = N . In this case, taking into
account expressions (3.3), (3.5), (3.9) for the operatorsγ̂e and γ̂h, equation (3.15) for the
Hall field Ex(x, t) can be written as

Ex + memhc
2

e2

(
ν + ∂

∂t

)[
1

H

(
ν + ∂

∂t

)
Ex

H

]
= (mh −me)c

e

(
ν + ∂

∂t

)
Ey

H
. (3.19)

The right-hand side of this equation is non-zero due to the difference of the electron and
hole masses. The relation between the longitudinal current densityjy(x, t) and the electric
field Ey(x, t) turns out to be strongly non-linear with respect to the magnetic fieldH(x, t):

Hjy + memhc
2

e2

(
ν + ∂

∂t

)[
1

H

(
ν + ∂

∂t

)
jy

]
= N(me +mh)c2

(
ν + ∂

∂t

)
Ey

H
. (3.20)

In the linear limit (infinitesimal amplitudes,H(x, t) ≈ H0) formula (3.20), together with
the Maxwell equations (2.3), in the high-frequency range (1.1), describes the propagation
of a transverse monochromatic wave with the dispersion law (1.5). In the general case of
finite amplitudes this formula can be used to study the transformation of magnetoplasma
waves under the action of the magnetodynamic mechanism of non-linearity. The following
section is devoted to this area.
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4. Finite-amplitude magnetoplasma waves

4.1. Analytical solution of the problem

Consider now the problem of propagation of non-linear electromagnetic waves in a
compensated metal in the case of high frequencies (1.1) and weak spatial dispersion (1.2).
Omitting in (3.20) terms proportional to the relaxation frequencyν and eliminating therein
the current densityjy(x, t) via the first Maxwell equation (2.3) we come to the following
set of equations for the electric and magnetic fields:

H
∂H

∂x
+ memhc

2

e2

∂

∂t

(
1

H

∂2H

∂t ∂x

)
= −4πN(me +mh)c ∂

∂t

(
Ey

H

)
(4.1)

∂Ey

∂x
= −1

c

∂H

∂t
. (4.2)

We shall be looking for solutions of (4.1), (4.2) which have the form of stationary plane
waves propagating in thex-direction:

Ey(x, t) = Ey(τ) H(x, t) = H(τ) τ = t − x/V (4.3)

whereτ is a new, running, variable. The partial differential equations (4.1), (4.2) become
now ordinary differential equations with respect toτ . Integrating (4.2) one deduces the
relation between the electric and magnetic fields:

Ey(τ) = V

c
[H(τ)−H0] . (4.4)

HereH0 is an integration constant playing the role of an external magnetic field. Without
loss of generality it can be chosen positive (H0 > 0). Then the total magnetic fieldH(τ)
should also be positive for allτs because from the very beginningH(τ) has been supposed
to be of constant sign. So, we shall search for solutions of the set (4.1), (4.2) which satisfy
the conditionH(τ) > 0.

Now let us integrate equation (4.1) and exclude the electric fieldEy(τ) using (4.4). After
multiplying both sides of the resulting equation byH dH/dτ and integrating once more,
one can obtain for the magnetic fieldH(τ) the following non-linear first-order differential
equation:

−
(

2

�0

)2

H0
2

(
d

dτ
H(τ)

)2

= P(H(τ)). (4.5)

HereP(H) is the fourth-order polynomial

P(H) = H 4+ AH 2+ 8

(
V

VA

)2

H0
3H + B (4.6)

with the coefficientsA andB being arbitrary constants. This polynomial can be rewritten
as

P(H) = (H −H1)(H −H2)(H −H3)(H −H4) (4.7)

where we use the designationsH1, H2, H3, H4 for the roots of (4.6). Such a representation
of P(H), with the quantitiesH1, H2, H3, H4 playing the role of the parameters of the
problem, instead of the coefficientsA andB, is convenient for solving (4.5). We emphasize
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that P(H) has no cubic term and that the coefficient of the linear term is positive. This
imposes some restrictions on the roots of the polynomial (4.6):

H1+H2+H3+H4 = 0 (4.8)

8H0
3

(
V

VA

)2

= −(H1+H2)(H2+H3)(H2+H4) > 0. (4.9)

Hereafter we shall assume that at least two zeros ofP(H) are positive. This is necessary
for the existence of a positive solutionH(τ) > 0 of the equation (4.5) (withτ varying,
it will vary in the interval between these two positive roots). In this case the other two
roots are real as follows from (4.8), (4.9). Moreover, according to (4.8) the least of them
is necessarily negative. Without loss of generality we enumerate the zeros ofP(H) in
descending order:

H4 < H3 < H2 < H1. (4.10)

Then,

H4 < 0< H2 < H1 H2+H4 < 0< H2+H3. (4.11)

Since the left-hand side of (4.5) is negative, this equation possesses a real solution only when
the polynomialP(H) is also negative. Noting also thatP(H)→ +∞ asH → ±∞ one
can conclude that the positive and bounded solutionH(τ) > 0 of the differential equation
(4.5) satisfies the inequalities

0< H2 6 H(τ) 6 H1. (4.12)

It is known [22, 23] that solutions of equations of the type (4.5) with fourth-order
polynomials on the right-hand side can be presented as rational functions of squared elliptic
sines. In our case, when all of the roots of the polynomial (4.7) are real, the solutionH(τ)

has the form

H(τ) = H1(H2−H4)+H4(H1−H2) sn2(2Kτ/T ; k)
(H2−H4)+ (H1−H2) sn2(2Kτ/T ; k) . (4.13)

HereK = K(k) is complete elliptic integral of the first kind. The modulusk of the elliptic
sine can be expressed in terms of the roots ofP(H) as

k2 = (H1−H2)(H3−H4)

(H1−H3)(H2−H4)
06 k2 6 1 (4.14)

and, as follows from (4.10), it is a positive quantity less than unity. The squared elliptic sine
sn2(2Kτ/T ; k) is periodic function of its argument 2Kτ/T with the period 2K. Hence,
the magnetic field of the waveH(τ) has the periodT :

T = 8K(k)

�0

H0

[(H1−H3)(H2−H4)]1/2
. (4.15)

Since a squared elliptic sine varies from zero to unity,H(τ), according to (4.13), oscillates
in the range (4.12) with the amplitude

H = (H1−H2)/2. (4.16)

The phase velocity of the wave (4.13) is related to the roots of the polynomial (4.7) by the
expression (4.9).
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Let us separate in (4.13) the constant and alternating components of the magnetic field.
To this end it is convenient to parametrize the roots of the polynomial (4.7) in terms of the
elliptic functions sn(α; k′), cn(α; k′) and dn(α; k′) in the same way as was done in [24]:

H1 = 4H0K(k)

�0T

1+ dn(α; k′)− cn(α; k′)
sn(α; k′)

H2 = 4H0K(k)

�0T

1− dn(α; k′)+ cn(α; k′)
sn(α; k′)

H3 = −4H0K(k)

�0T

1− dn(α; k′)− cn(α; k′)
sn(α; k′)

H4 = −4H0K(k)

�0T

1+ dn(α; k′)+ cn(α; k′)
sn(α; k′) .

(4.17)

Here the complementary modulusk′ is defined by

k′ = (1− k2)1/2. (4.18)

It should be stressed that in terms of (4.17) the equation (4.8) for the roots of the polynomial
(4.7), as well as the expressions (4.14) for the modulusk and (4.15) for the periodT , become
identities. In this way the equations (4.17) introduce new integration constantsα, k andT
instead of the old ones, the zeros ofP(H). Substituting (4.17) in (4.13) one can obtain
after some calculations outlined in appendix B the following representation:

H(τ) = H0+ i
4H0K

�0T

[
Z

(
2K

T
τ − iα

2
; k
)
− Z

(
2K

T
τ + iα

2
; k
)]
. (4.19)

Here Jacobi’s functionZ(u; k) [22], which is the logarithmic derivative of one of the theta-
functions, is a periodic function of its argument with the period 2K(k). Thus, the mean
value over the periodT of the second term in (4.19) is zero. The constant component of
the magnetic fieldH(τ) is chosen equal toH0, to ensure, together with (4.4), the vanishing
of the mean value of the electric field. Such an additional requirement (the requirement of
electroneutrality) leads to the wave periodT no longer being an independent integration
constant. It turns out to be related to the parametersα andk by

T (α, k) = 4K(k)

�0

[
πα

2K(k)K(k′)
+ cn(α; k′) dn(α; k′)

sn(α; k′) + Z(α; k′)
]
. (4.20)

The dependence of the phase velocityV and wave amplitudeH on α andk follows from
(4.9), (4.16) and (4.17):

V 2(α, k) = VA2

[
4K(k)

�0T (α, k)

]3 cn(α; k′) dn(α; k′)
sn3(α; k′) (4.21)

H(α, k) = 4H0K(k)

�0T (α, k)

dn(α; k′)− cn(α; k′)
sn(α; k′) . (4.22)

Thus, the expressions (4.19)–(4.22) determine the shape of the non-linear magnetoplasma
wave, its period, velocity and amplitude. The region of admissible values of the independent
parametersα andk is given by

06 α 6 K(k′) 06 k 6 1. (4.23)

The restrictions on the constantα stem from the conditions (4.10), (4.11) and (4.17), and
the interval of values ofk are rewritten from (4.14).
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It is interesting that the expression (4.19) can be easily presented as a superposition of
harmonic waves using the well-known Fourier series for the JacobiZ-function (see [22]):

H(τ) = H0+ 8πH0

�0T

∞∑
n=1

sinh(πnα/2K(k))

sinh(πnK(k′)/K(k))
cos

(
2πn

T
τ

)
. (4.24)

Figure 1. The range of admissible values of the amplitude and velocity of the magnetoplasma
wave (the unshaded part of theH–V plane). The line S corresponds to the soliton solution. The
dashed curve L is the boundary of the quasilinear excitation region.

4.2. Analysis of the results

Let us study the form of the non-linear magnetoplasma wave, considering the amplitudeH
and the phase velocityV as independent parameters. In this case the quantitiesα, k and
the periodT are determined by the relations (4.20)–(4.22). The range of admissible values
of H andV follows from the restrictions (4.23). It is depicted in figure 1 as the unshaded
region of theH–V plane.

The left-hand boundary of theH–V diagram corresponds to the zero value of the
modulusk:

H = 0 06 V 6 VA at k = 0. (4.25)

This can be proved as follows. In accordance with (4.18), the complementary modulus
k′ = 1 whenk = 0, and the elliptic functions become elementary ones [22]:

K(k = 0) = π/2 K(k′ → 1) = ln(4/k)→∞
sn(α; k′ = 1) = Z(α; k′ = 1) = tanhα

cn(α; k′ = 1) = dn(α; k′ = 1) = 1/ coshα

dn(α; k′ → 1)− cn(α; k′ → 1) = (k2/2) coshα tanh2 α.

(4.26)

Substituting (4.26) in (4.20)–(4.22), one can find that in thek = 0 limit the amplitude
of the wave is zero,H = 0, and its periodT and the parameterα are related toV by

�0T = 2π
(
1− V 2/V 2

A

)−1/2
coshα = VA/V. (4.27)

At the same time, it follows from (4.23) fork = 0 that 06 α 6∞. This implies that the
phase velocityV varies from zero toVA; see (4.25).
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The upper boundary line S in figure 1 corresponds to the unit value of the modulusk.
This straight line is given by the equation

V = VA(1+H/H0) at k = 1. (4.28)

Here k′ = 0, and the elliptic functions are described by the following asymptotic
expressions [22]:

K(k→ 1) = ln(4/k′)→∞ K(k′ = 0) = π/2
cn(α; k′ = 0) = cosα dn(α; k′ = 0) = 1

sn(α; k′ = 0) = sinα Z(α; k′ = 0) = 0.

(4.29)

From relations (4.20)–(4.23) together with (4.29) one can find that the wave periodT tends
to infinity at k′ → 0, while α, which varies from zero toπ/2, can be expressed in terms
of V :

�0T = 4 cot(α) ln(4/k′)→∞ cosα = VA/V 06 α 6 π/2. (4.30)

The wave amplitude and velocity, we recall, are related in this case by the equation of the
line S, equation (4.28).

The lower boundary of theH–V domain in figure 1 is the positive semi-axis ofH:

06 H 6∞ V = 0 atα = K(k′) 06 k 6 1. (4.31)

To confirm this, one has to setα in (4.20)–(4.22) equal to its maximal valueK(k′). Then
(see [22]),

cn(K(k′); k′) = Z(K(k′); k′) = 0 dn(K(k′); k′) = k sn(K(k′); k′) = 1 (4.32)

and one can write the velocity, period and parameterk in the form

V = 0 T = 2π/�0 kK(k) = πH/2H0. (4.33)

As follows from (4.33) the amplitudeH increases from 0 to+∞ ask increases from zero
to unity.

From the above analysis and figure 1 we see that, for any positive value of the
amplitudeH, the phase velocityV can vary from zero to the maximal value (4.28):

06 H 6∞ 06 V 6 VA(1+H/H0). (4.34)

This means that the velocity of the non-linear magnetoplasma wave (4.19) can be either
less or larger than that of the Alfvén one,VA. In other words, the domain of existence of
the magnetoplasma waves is wider in the non-linear case than in the linear one, in which
electromagnetic waves propagate only whenV < VA (see (1.5) in the introduction).

Now we calculate the linear asymptote of the magnetic field (4.19), in which the first
term of the sum overn in the Fourier series (4.24) dominates. Obviously, this case
corresponds to sufficiently small values of the modulusk, which enables one to replace
K(k) andK(k′) in (4.24) with their limiting values (4.26), and to use forT and α the
formulae (4.27). The amplitude of the first harmonic in (4.24) is given by

8πH0

�0T

sinh(πα/2K(k))

sinh(πK(k′)/K(k))
= H0

k2VA

2V

(
1− V

2

V 2
A

)
= H (4.35)

and is asymptotically equal to the wave amplitude (4.22). Thus, in the linear limit the
magnetoplasma wave can be written as

H(x, t) = H0+H cos

[
2π

T

(
t − x

V

)]
. (4.36)
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The corresponding dispersion law (the relation between the periodT and the velocityV ) is
described by the first formula in (4.27). When rewritten in terms of the frequencyω = 2π/T
and wavevectorq = ω/V , it takes the usual form (1.5) [21]. The existence domain of the
linear wave (4.36), (4.27) can be determined as follows. The amplitude of the second
harmonic in (4.24) is small in comparison with the amplitude (4.35), ifk2VA/8V � 1.
Expressing the parameterk2VA/8V in this inequality in terms of the amplitudeH using
(4.35) one can get the criterion for the linearity of the magnetoplasma wave:

H/4H0� 1− (V/VA)2. (4.37)

Inequality (4.37) determines the region in theH–V plane situated under the curveV =
VA(1−H/4H0)

1/2, which is depicted in figure 1 with the dotted line.
The condition (4.37) is broken when the amplitudeH increases, as well as when the

velocity V increases. In both cases the higher harmonics begin to play a significant role in
forming the wave shape.

Figure 2. The shape of the magnetoplasma wave at the fixed amplitudeH = 0.2H0 and for
different values of the velocity: (a)V = 0.7VA; (b) V = 1.1VA.

Figure 3. The dependence of the wave period on the velocity at the following fixed amplitudes:
(a)H = 0.2H0; (b) H = 0.5H0.

In figure 2 the dependence of the magnetic field (4.24) onτ/T , when the amplitude
is fixed, H = 0.2H0, is presented for two different values of the velocityV . Curve a
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corresponds to quasiharmonic oscillations and with good accuracy can be described by
formula (4.36). Curve b represents the wave profile in the non-linear regime. One can see
that non-linear oscillationsH(τ/T ) are less frequent than linear ones. The non-linear wave
is a series of separated pulses, and its periodT (V/VA) increases infinitely with growth
of the velocityV (figure 3). TherebyT (V/VA) changes starting from its resonance value
T (0) = 2π/�0 at V = 0 (see (4.33)). The aperiodic regime occurs when the phase
velocity V takes a maximal—for a given amplitudeH—value (4.28). At this moment the
point (H, V ) reaches the line S in figure 1, and the magnetoplasma wave transforms into a
solitary pulse, i.e. a soliton.

To obtain the analytical dependence of the magnetic field of the solitary wave on the
variableτ we have to replace theZ-function in equation (4.19) with its asymptotic form,
Z(u; 1) = tanhu, and to use for the integralK(k), the periodT and the parameterα the
formulae (4.29), (4.30). Some simple calculations lead to the following result:

H(x, t) = H0+ 2H0

{
V 2

V 2
A

− 1

}{
1+ V

VA
cosh

[
�0

(
V 2

V 2
A

− 1

)1/2(
t − x

V

)]}−1

. (4.38)

From this expression one can see that the soliton propagates against the external magnetic
field H0. Its typical width1τ is, in order of magnitude, equal to 2π�−1

0 (V 2/V 2
A − 1)−1/2.

The phase velocityV is larger than the Alfv́en one,VA, and depends linearly on the
amplitudeH according to (4.28).

For growingH and fixedV one can observe transformations of the wave shape (4.24)
which are inverse to the ones described above. As follows from figure 1 it is necessary to
analyse two distinct cases:V < VA andV > VA.

Figure 4. The shape of the magnetoplasma wave at the fixed velocityV = 0.7VA and different
values of the amplitude: (a)H = 0.2H0; (b) H = 0.8H0.

Let us study first the case in whichV < VA and the point(H, V ) in figure 1 moves
away from the quasilinear region, located under the dotted curve L. Figure 4 demonstrates
a crossover from the harmonic wave (4.36) (curve a) to the non-linear one (curve b) for
V = 0.7VA. With H growing, the maxima of the functionH(τ/T ) become sharper, and
the periodT (H/H0) decreases. WhenH = 0, the periodT has its largest, linear, value
(4.27), while it tends to the constant 2π/�0 with H/H0 going to infinity (see figure 5).

Consider now the magnetoplasma wave with a velocity larger than the Alfvén one,
V > VA. This case differs from the previous one, since the point(H, V ) in figure 1 starts
from the line S corresponding to the soliton (4.38), and does not leave the non-linear region.
Such a wave forV = 1.2VA and two values of the amplitudeH is depicted in figure 6.
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Figure 5. The dependence of the wave period on the amplitude at the fixed velocityV = 0.7VA.

Figure 6. The shape of the magnetoplasma wave at the fixed velocityV = 1.2VA and different
values of the amplitude: (a)H = 0.3H0; (b) H = 0.8H0.

Figure 7. The dependence of the wave period on the amplitude at the fixed velocityV = 1.2VA.

It is seen that for anyH the magnetoplasma oscillations have the essentially non-linear
form of isolated pulses. Their periodT (H/H0) is infinite whenH has its minimal—for a
given V—value, equal to the soliton amplitude (4.28). AsH grows, the periodT sharply
decreases, tending to the constant 2π/�0 (see figure 7).
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Like the soliton, the periodic magnetoplasma wave with a velocity larger thanVA has no
analogue in the linear case. It is formed exceptionally due to the self-action, caused by the
magnetodynamic mechanism of non-linearity. Figure 6 convincingly demonstrates the fact
that in the non-linear case the magnetoplasma wave possesses two characteristic scales of
τ . The first one is the wave periodT , while the second one is the time interval1τ , during
which the wave field changes by a quantity of the order of the amplitude. In accordance with
(4.19) the quantity1τ is of the order ofπT/2K(k). Thus, in the non-linear situation the
role of the frequencyω in the inequality (1.1) is played by 2π/1τ = 4K(k)/T . Naturally,
in the linear limit the two scales,T and1τ , coincide and 4K(k)/T becomes the frequency
2π/T of the harmonic wave (4.36).

In the analysis presented above it was assumed that the external magnetic field is non-
zero,H0 6= 0. Now let us discuss the properties of the non-linear wave (4.19) in the absence
of H0. As follows from (4.34), forH0 = 0 the domain of existence of the wave in theH–V
plane reduces to

06 H 6∞ 06 V 6 VH VH = H
[4πN(me +mh)]1/2

. (4.39)

Thereby the quantityVH has the meaning of the Alfvén velocity in the magnetic field equal
to the amplitudeH. Formulae (4.20)–(4.22) yield that in the case whereH0 → 0 the
parametersα and k tend toπ/2 and 1 respectively, and the wave periodT approaches
infinity. Hence, we can replace the JacobiZ-function in (4.19) with its asymptotic form
given by (4.26) and express the frequency scale 4K(k)/T in terms of the amplitudeH
using (4.22) and (4.29). After some simple transformations one finds that the wave (4.19)
in the absence of an external fieldH0 transforms into the soliton:

H(x, t) = 2H cosh−1

[
eH

(memh)1/2c

(
t − x

V

)]
. (4.40)

Its characteristic width,1τ = 2π(memh)1/2c/eH, is the geometric mean of the electron and
hole cyclotron periods in the magnetic field equal to the amplitudeH (compare with the
expression (1.5) for�0). When the phase velocityV takes its maximal—for a givenH—
valueV = VH, the two-parameter soliton (4.40) coincides with the one-parameter soliton
(4.38) forH0 = 0.

5. Conclusion

In the present work we have solved the problem of the non-linear magnetoplasma waves
of finite amplitude in compensated metals. The mechanism of non-linearity is due to the
self-action of the wave magnetic field. For this purpose we have calculated the conductivity
tensor (3.12) in the absence of the spatial dispersion (1.2). In the non-linear regime its
components are differential—with respect to time—operators, which is a manifestation of
the temporal dispersion effects. It is shown that in non-compensated metal with a single
group of charge carriers, non-linearity modifies the Hall effect considerably, but does not
affect the longitudinal current density (see (3.18), (3.17)). At the same time, both the
Hall and longitudinal fields turn out to be essentially non-linear in compensated metal
(see (3.19), (3.20)).

We have obtained and analysed the analytical solution (4.4), (4.19)–(4.24) for the non-
linear magnetoplasma wave in the case in which the total magnetic field is of constant
sign. It has been shown that the dependence of the wave profile on the running variable
τ = t−x/V is specified by two parameters, namely the amplitudeH of the wave magnetic
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field and the phase velocityV . In comparison with the linear limit, whenV < VA, the
range of admissible values ofV in the non-linear regime is extended, so the phase velocity
can be either less or larger than the Alfvén one,VA.

We have demonstrated the transition of our solution to the well-known linear
magnetoplasma wave (4.36), (4.27) [21] in the case of sufficiently small amplitudesH
andV < VA. Also, the range (4.37) of existence of the linear solution has been established.
It was shown that for a fixed value of the amplitudeH the primarily quasiharmonic wave
profile transforms into a sequence of pulses, with the interval between them expanding
infinitely, as the velocityV increases (see figures 2 and 3). When the phase velocity
reaches the maximal possible value (4.28), the magnetoplasma wave becomes a soliton
(4.38). According to the dispersion law (4.28), the soliton velocityV , being larger than
the Alfvén oneVA, increases linearly with increase of the amplitudeH. Thus, the solitary
wave (4.38) is a distinguished single-parameter solution. When the wave amplitude increases
with the velocity kept fixed, the magnetoplasma oscillations take the form of sharp spikes.
Their period decreases monotonically (see figures 5 and 7). In such a manner, the linear
oscillations transform to anharmonic ones whenV < VA (figure 4), while atV > VA the
soliton turns into a periodic magnetoplasma wave (figure 6).

We pay special attention to the fact that the strongly non-linear regime can occur even
in the case in which the wave amplitude is small in comparison with the external magnetic
field. This enables experimental observation of the predicted non-linear excitations to be
achieved. Indeed, the non-linear waves with small amplitudes have a phase velocityV

close toVA (see figure 1). In such a case, the condition (1.2), which allows one to neglect
the spatial dispersion effects, coincides with the inequality (1.6). Therefore the non-linear
excitations can be observed in the same range of the external magnetic fieldsH0 as the
linear waves exist in. In the bismuth-like semi-metals the Alfvén velocityVA considerably
exceeds the Fermi velocityve,hF , if the external magnetic fieldH0 is of the order of few
thousands of oersteds (or higher). At the same time, the amplitudes of the alternating signal
in today’s experiments attain values of tens or hundreds of oersteds (see, e.g. [1, 12]). For
just this reason, it is important that the non-linear effects discussed in our paper take place
also in the case whereH� H0.

In the studies presented above we restricted ourselves to the non-dissipative situation.
However, in real conditions, even in the high-frequency region (1.1), wave propagation
is always accompanied with weak damping due to collisions of electrons with scatterers.
So, the question of the influence of a small relaxation frequencyν on the formation and
propagation of the non-linear excitations discovered naturally arises. The investigation of
the stability of the waves found is an important aspect as well, because some types of
travelling wave are unstable against small perturbations (see, e.g. [25]). Besides, in both
non-linear and linear cases there is the problem of taking into account the spatial dispersion
effects, which is especially important when the phase velocityV is small and when the
inequality (1.2) is violated. Finally, a remaining question is that of how to generate the
predicted electromagnetic structures by means of an external signal. Such problems need
special investigations and will be considered in future studies.

Appendix A. An alternative derivation of expression (3.7)

The aim of this section is to eliminate the integral operators in the expression (3.4) for the
functionψe(x, ϕ, t), which can be done using integration by parts. Consider the first term
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in (3.4):

ψ1 = −v⊥
∫ t

−∞
dt ′ sin[ϕ −8(x, t ′, t)]eν(t ′−t)Ex

(
x, t ′

)
. (A.1)

The function8(x, t ′, t) introduced here is defined by

8(x, t ′, t) =
∫ t

t ′
dt ′′ �e(x, t ′′). (A.2)

It is easy to see that in the integrand in (A.1) the sine can be presented as a derivative:

sin[ϕ −8(x, t ′, t)] = − 1

�e(x, t ′)
∂

∂t ′
cos[ϕ −8(x, t ′, t)]. (A.3)

Substituting (A.3) in (A.1) and integrating by parts one can obtain

ψ1 = v⊥ cosϕ

�e
Ex − v⊥

∫ t

−∞
dt ′ cos[ϕ −8(x, t ′, t)]eν(t ′−t)

[(
ν + ∂

∂t

)
Ex

�e

]
t=t ′

. (A.4)

Now, presenting the function cos[ϕ −8(x, t ′, t)] as a full derivative:

cos[ϕ −8(x, t ′, t)] = 1

�e(x, t ′)
∂

∂t ′
sin[ϕ −8(x, t ′, t)] (A.5)

one can integrate (A.4) by parts. Then, using again (A.3) and integrating by parts once
more one can writeψ1(x, ϕ, t) as

ψ1 = v⊥ cosϕ

�e

{
Ex −

(
ν + ∂

∂t

)
1

�e

(
ν + ∂

∂t

)
Ex

�e

}
− v⊥ sinϕ

�e

(
ν + ∂

∂t

)
Ex

�e

+ v⊥
∫ t

−∞
dt ′ cos[ϕ −8(x, t ′, t)]eν(t ′−t)

×
[(
ν + ∂

∂t

)
1

�e

(
ν + ∂

∂t

)
1

�e

(
ν + ∂

∂t

)
Ex

�e

]
t=t ′

. (A.6)

As a result of the integration, the operatorγ̂e, equation (3.5), arises in (A.6). Thus,
integration by parts leads to an expansion of the integral operator in (A.1) in a power
series in the differential operator̂γe. Continuing the integration by parts in (A.6) one can
get

ψ1 = v⊥ cosϕ

�e

[
1− γ̂ 2

e + γ̂ 4
e − γ̂ 6

e + · · ·
]
Ex − v⊥ sinϕ

�e
γ̂e
[
1− γ̂ 2

e + γ̂ 4
e − γ̂ 6

e + · · ·
]
Ex.

(A.7)

The sum in square brackets in (A.7) is the operator(1+ γ̂ 2
e )
−1:

(
1+ γ̂ 2

e

)−1 =
∞∑
n=0

(−1)nγ̂ 2n
e . (A.8)

In this way, the final formula for the functionψ1(x, ϕ, t) takes the form

ψ1 = v⊥ cosϕ

�e

(
1+ γ̂ 2

e

)−1
Ex − v⊥ sinϕ

�e
γ̂e
(
1+ γ̂ 2

e

)−1
Ex. (A.9)

The second integral in equation (3.4) can be presented analogously, which leads to the
expression (3.7) for the functionψe(x, ϕ, t).
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Appendix B. Derivation of the representation (4.19) for the magnetic fieldH(τ )

Substituting representation (4.17) for the roots of the polynomialP(H) in the solution (4.13)
we obtain

H(τ) = 4H0K

�0T

1+ dn(α; k′)− cn(α; k′)
sn(α; k′)

−4H0K

�0T

2(dn(α; k′)− cn(α; k′))(1+ dn(α; k′)) sn2(2Kτ/T ; k)
sn(α; k′)[1+ cn(α; k′)+ (dn(α; k′)− cn(α; k′)) sn2(2Kτ/T ; k)] .

(B.1)

Using the standard identities from [22] we express the functions cn(α; k′), sn(α; k′) and
dn(α; k′) in the second summand of (B.1) via functions of iα/2 and rewriteH(τ) as

H(τ) = 4H0K

�0T

1+ dn(α; k′)− cn(α; k′)
sn(α; k′)

+ i
4H0K

�0T

2k2 sn(iα/2; k) cn(iα/2; k) dn(iα/2; k) sn2(2Kτ/T ; k)
1− k2 sn2(iα/2; k) sn2(2Kτ/T ; k) . (B.2)

Applying then the addition theorem for Jacobi’sZ-functions [24]:

2k2 sn(iα/2; k) cn(iα/2; k) dn(iα/2; k) sn2(2Kτ/T ; k)
1− k2 sn2(iα/2; k) sn2(2Kτ/T ; k)
= Z(2Kτ/T − iα/2; k)− Z(2Kτ/T + iα/2; k)+ 2Z

(
iα/2; k) (B.3)

we substitute (B.3) in (B.2) and go over from the functionZ(iα/2; k) to the function
Z(α; k′), as is described in [22]. After some simple transformations, expression (B.2) for
the magnetic field can be presented as

H(τ) = 4H0K

�0T

[
πα

2KK ′
+ cn(α; k′) dn(α; k′)

sn(α; k′) + Z(α; k′)
]

+ i
4H0K

�0T

[
Z

(
2K

T
τ − iα

2
; k
)
− Z

(
2K

T
τ + iα

2
; k
)]
. (B.4)

HereK ′ stands forK(k′).
The electroneutrality condition can be formulated as the requirement for the mean value

of Ey(τ) over the periodT to be zero. As follows from (4.4), this is the case if the constant
component of the magnetic field coincides withH0. Setting the first term in (B.4) equal to
H0, we obtain the expressions (4.19) for the magnetic fieldH(τ) and (4.20) for the wave
periodT .
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